Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77.924
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1362765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562963

RESUMO

Cestodes use own lipid-binding proteins to capture and transport hydrophobic ligands, including lipids that they cannot synthesise as fatty acids and cholesterol. In E. granulosus s.l., one of these lipoproteins is antigen B (EgAgB), codified by a multigenic and polymorphic family that gives rise to five gene products (EgAgB8/1-5 subunits) assembled as a 230 kDa macromolecule. EgAgB has a diagnostic value for cystic echinococcosis, but its putative role in the immunobiology of this infection is still poorly understood. Accumulating research suggests that EgAgB has immunomodulatory properties, but previous studies employed denatured antigen preparations that might exert different effects than the native form, thereby limiting data interpretation. This work analysed the modulatory actions on macrophages of native EgAgB (nEgAgB) and the recombinant form of EgAg8/1, which is the most abundant subunit in the larva and was expressed in insect S2 cells (rEgAgB8/1). Both EgAgB preparations were purified to homogeneity by immunoaffinity chromatography using a novel nanobody anti-EgAgB8/1. nEgAgB and rEgAgB8/1 exhibited differences in size and lipid composition. The rEgAgB8/1 generates mildly larger lipoproteins with a less diverse lipid composition than nEgAgB. Assays using human and murine macrophages showed that both nEgAgB and rEgAgB8/1 interfered with in vitro LPS-driven macrophage activation, decreasing cytokine (IL-1ß, IL-6, IL-12p40, IFN-ß) secretion and ·NO generation. Furthermore, nEgAgB and rEgAgB8/1 modulated in vivo LPS-induced cytokine production (IL-6, IL-10) and activation of large (measured as MHC-II level) and small (measured as CD86 and CD40 levels) macrophages in the peritoneum, although rEgAgB8/1 effects were less robust. Overall, this work reinforced the notion that EgAgB is an immunomodulatory component of E. granulosus s.l. Although nEgAgB lipid's effects cannot be ruled out, our data suggest that the EgAgB8/1 subunit contributes to EgAgB´s ability to regulate the inflammatory activation of macrophages.


Assuntos
Echinococcus granulosus , Humanos , Animais , Camundongos , Echinococcus granulosus/genética , Echinococcus granulosus/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Macrófagos , Citocinas/metabolismo
2.
J Transl Med ; 22(1): 323, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561750

RESUMO

BACKGROUND: MicroRNA (miRNA)-21-5p participates in various biological processes, including cancer and autoimmune diseases. However, its role in the development of fibrosis in the in vivo model of systemic sclerosis (SSc) has not been reported. This study investigated the effects of miRNA-21a-5p overexpression and inhibition on SSc fibrosis using a bleomycin-induced SSc mouse model. METHODS: A murine SSc model was induced by subcutaneously injecting 100 µg bleomycin dissolved in 0.9% NaCl into C57BL/6 mice daily for 5 weeks. On days 14, 21, and 28 from the start of bleomycin injection, 100 µg pre-miRNA-21a-5p or anti-miRNA-21a-5p in 1 mL saline was hydrodynamically injected into the mice. Fibrosis analysis was conducted in lung and skin tissues of SSc mice using hematoxylin and eosin as well as Masson's trichrome staining. Immunohistochemistry was used to examine the expression of inflammatory cytokines, phosphorylated signal transducer and activator of transcription-3 (STAT3) at Y705 or S727, and phosphatase and tensin homologue deleted on chromosome-10 (PTEN) in skin tissues of SSc mice. RESULTS: MiRNA-21a-5p overexpression promoted lung fibrosis in bleomycin-induced SSc mice, inducing infiltration of cells expressing TNF-α, IL-1ß, IL-6, or IL-17, along with STAT3 phosphorylated cells in the lesional skin. Conversely, anti-miRNA-21a-5p injection improved fibrosis in the lung and skin tissues of SSc mice, reducing the infiltration of cells secreting inflammatory cytokines in the skin tissue. In particular, it decreased STAT3-phosphorylated cell infiltration at Y705 and increased the infiltration of PTEN-expressing cells in the skin tissue of SSc mice. CONCLUSION: MiRNA-21a-5p promotes fibrosis in an in vivo murine SSc model, suggesting that its inhibition may be a therapeutic strategy for improving fibrosis in SSc.


Assuntos
MicroRNAs , Escleroderma Sistêmico , Animais , Camundongos , Bleomicina , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/induzido quimicamente , Pele/patologia
3.
Cell Commun Signal ; 22(1): 209, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566180

RESUMO

Inflammasomes are complex platforms for the cleavage and release of inactivated IL-1ß and IL-18 cytokines that trigger inflammatory responses against damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). Gut microbiota plays a pivotal role in maintaining gut homeostasis. Inflammasome activation needs to be tightly regulated to limit aberrant activation and bystander damage to the host cells. Several types of inflammasomes, including Node-like receptor protein family (e.g., NLRP1, NLRP3, NLRP6, NLRP12, NLRC4), PYHIN family, and pyrin inflammasomes, interact with gut microbiota to maintain gut homeostasis. This review discusses the current understanding of how inflammasomes and microbiota interact, and how this interaction impacts human health. Additionally, we introduce novel biologics and antagonists, such as inhibitors of IL-1ß and inflammasomes, as therapeutic strategies for treating gastrointestinal disorders when inflammasomes are dysregulated or the composition of gut microbiota changes.


Assuntos
Microbioma Gastrointestinal , Inflamassomos , Humanos , Inflamassomos/metabolismo , Citocinas/metabolismo
4.
Front Cell Infect Microbiol ; 14: 1377077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572314

RESUMO

Introduction: The pathogenic bacterium Helicobacter pylori has evolved glycan-mediated mechanisms to evade host immune defenses. This study tests the hypothesis that genetic disruption of H. pylori glycan biosynthesis alters immune recognition and response by human gastric epithelial cells and monocyte-derived dendritic cells. Methods: To test this hypothesis, human cell lines were challenged with wildtype H. pylori alongside an array of H. pylori glycosylation mutants. The relative levels of immune response were measured via immature dendritic cell maturation and cytokine secretion. Results: Our findings indicate that disruption of lipopolysaccharide biosynthesis diminishes gastric cytokine production, without disrupting dendritic cell recognition and activation. In contrast, variable immune responses were observed in protein glycosylation mutants which prompted us to test the hypothesis that phase variation plays a role in regulating bacterial cell surface glycosylation and subsequent immune recognition. Lewis antigen presentation does not correlate with extent of immune response, while the extent of lipopolysaccharide O-antigen elaboration does. Discussion: The outcomes of this study demonstrate that H. pylori glycans modulate the host immune response. This work provides a foundation to pursue immune-based tailoring of bacterial glycans towards modulating immunogenicity of microbial pathogens.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Lipopolissacarídeos/metabolismo , Estômago/patologia , Polissacarídeos/metabolismo , Citocinas/metabolismo , Infecções por Helicobacter/microbiologia , Mucosa Gástrica/microbiologia
5.
Front Cell Infect Microbiol ; 14: 1361326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572322

RESUMO

Spinal tuberculosis is a common extrapulmonary type that is often secondary to pulmonary or systemic infections. Mycobacterium tuberculosis infection often leads to the balance of immune control and bacterial persistence. In this study, 64 patients were enrolled and the clinicopathological and immunological characteristics of different age groups were analyzed. Anatomically, spinal tuberculosis in each group mostly occurred in the thoracic and lumbar vertebrae. Imaging before preoperative anti-tuberculosis therapy showed that the proportion of abscesses in the older group was significantly lower than that in the younger and middle-aged groups. However, pathological examination of surgical specimens showed that the proportion of abscesses in the older group was significantly higher than that in the other groups, and there was no difference in the granulomatous inflammation, caseous necrosis, inflammatory necrosis, acute inflammation, exudation, granulation tissue formation, and fibrous tissue hyperplasia. B cell number was significantly lower in the middle-aged and older groups compared to the younger group, while the number of T cells, CD4+ T cells, CD8+ T cells, macrophages, lymphocytes, plasma cells, and NK cells did not differ. Meaningfully, we found that the proportion of IL-10 high expression and TGF-ß1 positive in the older group was significantly higher than that in the younger group. TNF-α, CD66b, IFN-γ, and IL-6 expressions were not different among the three groups. In conclusion, there are some differences in imaging, pathological, and immune features of spinal tuberculosis in different age groups. The high expression of IL-10 and TGF-ß1 in older patients may weaken their anti-tuberculosis immunity and treatment effectiveness.


Assuntos
Mycobacterium tuberculosis , Tuberculose da Coluna Vertebral , Pessoa de Meia-Idade , Humanos , Idoso , Interleucina-10/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tuberculose da Coluna Vertebral/tratamento farmacológico , Tuberculose da Coluna Vertebral/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Abscesso/tratamento farmacológico , Abscesso/metabolismo , Antituberculosos/uso terapêutico , Necrose/tratamento farmacológico , Necrose/metabolismo , Linfócitos T CD4-Positivos , Citocinas/metabolismo
6.
Immun Inflamm Dis ; 12(4): e1234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578001

RESUMO

BACKGROUND AND OBJECTIVE: Long noncoding RNAs (lncRNAs) are crucial in regulating various physiological and pathological processes, including immune responses. LINC01686 is a lncRNA with previously uncharacterized functions in immune regulation. This study aims to investigate the function of LINC01686 in lipopolysaccharide (LPS)-induced inflammatory responses in the human monocytic leukemia cell line THP-1 and its potential regulatory mechanisms involving miR-18a-5p and the anti-inflammatory protein A20. METHOD: THP-1 cells were stimulated with LPS to induce inflammatory responses, followed by analysis of LINC01686 expression levels. The role of LINC01686 in regulating the expression of interleukin (IL)-6, IL-8, A20, and signal transducer and activator of transcription 1 (STAT1) was examined using small interfering RNA-mediated knockdown. Additionally, the involvement of miR-18a-5p in LINC01686-mediated regulatory pathways was assessed by transfection with decoy RNAs mimicking the miR-18a-5p binding sites of LINC01686 or A20 messenger RNA. RESULTS: LINC01686 expression was upregulated in THP-1 cells following LPS stimulation. Suppression of LINC01686 enhanced LPS-induced expression of IL-6 and IL-8, mediated through increased production of reactive oxygen species. Moreover, LINC01686 knockdown upregulated the expression and activation of IκB-ζ, STAT1, and downregulated A20 expression. Transfection with decoy RNAs reversed the effects of LINC01686 suppression on A20, STAT1, IL-6, and IL-8 expression, highlighting the role of LINC01686 in sponging miR-18a-5p and regulating A20 expression. CONCLUSION: This study provides the first evidence that LINC01686 plays a critical role in modulating LPS-induced inflammatory responses in THP-1 cells by sponging miR-18a-5p, thereby regulating the expression and activation of A20 and STAT1. These findings shed light on the complex regulatory mechanisms involving lncRNAs in immune responses and offer potential therapeutic targets for inflammatory diseases.


Assuntos
Citocinas , MicroRNAs , RNA Longo não Codificante , Humanos , Citocinas/genética , Citocinas/metabolismo , Interleucina-6 , Interleucina-8/metabolismo , Lipopolissacarídeos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Células THP-1
7.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585654

RESUMO

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Assuntos
Infecções por Klebsiella , Pulmão , Humanos , Camundongos , Animais , Pulmão/patologia , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiologia , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferação de Células , Infecções por Klebsiella/microbiologia , Camundongos Endogâmicos C57BL
8.
J Immunother Cancer ; 12(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580330

RESUMO

BACKGROUND: Initiation of antitumor immunity is reliant on the stimulation of dendritic cells (DCs) to present tumor antigens to naïve T cells and generate effector T cells that can kill cancer cells. Induction of immunogenic cell death after certain types of cytotoxic anticancer therapies can stimulate T cell-mediated immunity. However, cytotoxic therapies simultaneously activate multiple types of cellular stress and programmed cell death; hence, it remains unknown what types of cancer cell death confer superior antitumor immunity. METHODS: Murine cancer cells were engineered to activate apoptotic or pyroptotic cell death after Dox-induced expression of procell death proteins. Cell-free supernatants were collected to measure secreted danger signals, cytokines, and chemokines. Tumors were formed by transplanting engineered tumor cells to specifically activate apoptosis or pyroptosis in established tumors and the magnitude of immune response measured by flow cytometry. Tumor growth was measured using calipers to estimate end point tumor volumes for Kaplan-Meier survival analysis. RESULTS: We demonstrated that, unlike apoptosis, pyroptosis induces an immunostimulatory secretome signature. In established tumors pyroptosis preferentially activated CD103+ and XCR1+ type I conventional DCs (cDC1) along with a higher magnitude and functionality of tumor-specific CD8+ T cells and reduced number of regulatory T cells within the tumor. Depletion of cDC1 or CD4+ and CD8+ T cells ablated the antitumor response leaving mice susceptible to a tumor rechallenge. CONCLUSION: Our study highlights that distinct types of cell death yield varying immunotherapeutic effect and selective activation of pyroptosis can be used to potentiate multiple aspects of the anticancer immunity cycle.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Piroptose , Células Dendríticas , Citocinas/metabolismo
9.
Pharm Biol ; 62(1): 326-340, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38584568

RESUMO

CONTEXT: Asthma presents a global health challenge. The main pharmacotherapy is synthetic chemicals and biological-based drugs that are costly, and have significant side effects. In contrast, use of natural products, such as onion (Allium cepa L., Amaryllidaceae) in the treatment of airway diseases has increased world-wide because of their perceived efficacy and little safety concerns. However, their pharmacological actions remain largely uncharacterized. OBJECTIVE: We investigated whether onion bulb extract (OBE) can (1) reverse established asthma phenotype (therapeutic treatment) and/or (2) prevent the development of the asthma phenotype, if given before the immunization process (preventative treatment). MATERIALS AND METHODS: Six groups of male Balb/c mice were established for the therapeutic (21 days) and five groups for the preventative (19 days) treatment protocols; including PBS and house dust mite (HDM)-challenged mice treated with vehicle or OBE (30, 60, and 100 mg/kg/i.p.). Airways inflammation was determined using cytology, histology, immunofluorescence, Western blot, and serum IgE. RESULTS: Therapeutic (60 mg/kg/i.p.) and preventative (100 mg/kg/i.p.) OBE treatment resulted in down-regulation of HDM-induced airway cellular influx, histopathological changes and the increase in expression of pro-inflammatory signaling pathway EGFR, ERK1/2, AKT, pro-inflammatory cytokines and serum IgE. DISCUSSION AND CONCLUSION: Our data show that OBE is an effective anti-inflammatory agent with both therapeutic and preventative anti-asthma effects. These findings imply that onion/OBE may be used as an adjunct therapeutic agent in established asthma and/or to prevent development of allergic asthma. However, further studies to identify the active constituents, and demonstrate proof-of-concept in humans are needed.


Assuntos
Asma , Cebolas , Humanos , Masculino , Animais , Camundongos , Modelos Animais de Doenças , Asma/tratamento farmacológico , Asma/prevenção & controle , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Inflamação/metabolismo , Citocinas/metabolismo , Pyroglyphidae/metabolismo , Imunoglobulina E , Camundongos Endogâmicos BALB C , Pulmão
10.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557424

RESUMO

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Lamiaceae , Humanos , Peptídeos beta-Amiloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Flavonoides/farmacologia , Complemento C3/metabolismo , Complemento C3/farmacologia , Complemento C3/uso terapêutico , Doenças Neuroinflamatórias , Astrócitos/metabolismo , Donepezila/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Citocinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
11.
Curr Protoc ; 4(4): e1027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588063

RESUMO

The development of patient-derived intestinal organoids represents an invaluable model for simulating the native human intestinal epithelium. These stem cell-rich cultures outperform commonly used cell lines like Caco-2 and HT29-MTX in reflecting the cellular diversity of the native intestinal epithelium after differentiation. In our recent study examining the effects of polystyrene (PS), microplastics (MPs), and nanoplastics (NPs), widespread pollutants in our environment and food chain, on the human intestinal epithelium, these organoids have been instrumental in elucidating the absorption mechanisms and potential biological impacts of plastic particles. Building on previously established protocols in human intestinal organoid culture, we herein detail a streamlined protocol for the cultivation, differentiation, and generation of organoid-derived monolayers. This protocol is tailored to generate monolayers incorporating microfold cells (M cells), key for intestinal particle uptake but often absent in current in vitro models. We provide validated protocols for the characterization of MPs/NPs via scanning electron microscopy (SEM) for detailed imaging and their introduction to intestinal epithelial monolayer cells via confocal immunostaining. Additionally, protocols to test the impacts of MP/NP exposure on the functions of the intestinal barrier using transendothelial electrical resistance (TEER) measurements and assessing inflammatory responses using cytokine profiling are detailed. Overall, our protocols enable the generation of human intestinal organoid monolayers, complete with the option of including or excluding M cells, offering crucial techniques for observing particle uptake and identifying inflammatory responses in intestinal epithelial cells to advance our knowledge of the potential effects of plastic pollution on human gut health. These approaches are also amendable to the study of other gut-related chemical and biological exposures and physiological responses due to the robust nature of the systems. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Human intestinal organoid culture and generation of monolayers with and without M cells Support Protocol 1: Culture of L-WRN and production of WRN-conditioned medium Support Protocol 2: Neuronal cell culture and integration into intestinal epithelium Support Protocol 3: Immune cell culture and integration into intestinal epithelium Basic Protocol 2: Scanning electron microscopy: sample preparation and imaging Basic Protocol 3: Immunostaining and confocal imaging of MP/NP uptake in organoid-derived monolayers Basic Protocol 4: Assessment of intestinal barrier function via TEER measurements Basic Protocol 5: Cytokine profiling using ELISA post-MP/NP exposure.


Assuntos
Microplásticos , Plásticos , Humanos , Microplásticos/metabolismo , Células CACO-2 , Plásticos/metabolismo , Mucosa Intestinal/metabolismo , Organoides , Epitélio , Citocinas/metabolismo
12.
Front Immunol ; 15: 1354128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558806

RESUMO

Importance: Disease models for atopic dermatitis (AD) have primarily focused on understanding underlying environmental, immunologic, and genetic etiologies. However, the role of metabolic mechanisms in AD remains understudied. Objective: To investigate the circulating blood metabolomic and cytokine profile of AD as compared to healthy control patients. Design: This study collected plasma from 20 atopic dermatitis with moderate-to-severe itch (score of ≥5 on the itch Numeric Rating Scale and IGA score ≥3) and 24 healthy control patients. Mass-spectrometry based metabolite data were compared between AD and healthy controls. Unsupervised and supervised machine learning algorithms and univariate analysis analyzed metabolic concentrations. Metabolite enrichment and pathway analyses were performed on metabolites with significant fold change between AD and healthy control patients. To investigate the correlation between metabolites levels and cytokines, Spearman's rank correlation coefficients were calculated between metabolites and cytokines. Setting: Patients were recruited from the Johns Hopkins Itch Center and dermatology outpatient clinics in the Johns Hopkins Outpatient Center. Participants: The study included 20 atopic dermatitis patients and 24 healthy control patients. Main outcomes and measures: Fold changes of metabolites in AD vs healthy control plasma. Results: In patients with AD, amino acids isoleucine, tyrosine, threonine, tryptophan, valine, methionine, and phenylalanine, the amino acid derivatives creatinine, indole-3-acrylic acid, acetyl-L-carnitine, L-carnitine, 2-hydroxycinnamic acid, N-acetylaspartic acid, and the fatty amide oleamide had greater than 2-fold decrease (all P-values<0.0001) compared to healthy controls. Enriched metabolites were involved in branched-chain amino acid (valine, leucine, and isoleucine) degradation, catecholamine biosynthesis, thyroid hormone synthesis, threonine metabolism, and branched and long-chain fatty acid metabolism. Dysregulated metabolites in AD were positively correlated cytokines TARC and MCP-4 and negatively correlated with IL-1a and CCL20. Conclusions and relevance: Our study characterized novel dysregulated circulating plasma metabolites and metabolic pathways that may be involved in the pathogenesis of AD. These metabolic pathways serve as potential future biomarkers and therapeutic targets in the treatment of AD.


Assuntos
Dermatite Atópica , Humanos , Citocinas/metabolismo , Isoleucina , Prurido , Valina , Treonina
13.
Front Immunol ; 15: 1353039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562936

RESUMO

Introduction: Sepsis is characterized by a dysregulated innate immune response. It is a leading cause of morbidity and mortality in newborns, in particular for newborns that are born premature. Although previous literature indicate that the pro-inflammatory response may be impaired in preterm newborns, serum levels of monocyte-derived cytokines, such as TNF-α and IL-6, vary highly between newborns and can reach adult-like concentrations during sepsis. These contradictory observations and the severe consequences of neonatal sepsis in preterm newborns highlight the need for a better understanding of the pro-inflammatory cytokine response of preterm newborns to improve sepsis-related outcomes. Methods and results: Using an in vitro model with multiple read outs at the transcriptional and protein level, we consistently showed that the monocyte-derived cytokine response induced by sepsis-related bacteria is comparable between preterm newborns, term newborns and adults. We substantiated these findings by employing recombinant Toll-like receptor (TLR) ligands and showed that the activation of specific immune pathways, including the expression of TLRs, is also similar between preterm newborns, term newborns and adults. Importantly, we showed that at birth the production of TNF-α and IL-6 is highly variable between individuals and independent of gestational age. Discussion: These findings indicate that preterm newborns are equally capable of mounting a pro-inflammatory response against a broad range of bacterial pathogens that is comparable to term newborns and adults. Our results provide a better understanding of the pro-inflammatory response by preterm newborns and could guide the development of interventions that specifically modulate the pro-inflammatory response during sepsis in preterm newborns.


Assuntos
Citocinas , Sepse , Adulto , Feminino , Recém-Nascido , Humanos , Citocinas/metabolismo , Monócitos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Bactérias/metabolismo
14.
Ecotoxicol Environ Saf ; 275: 116282, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564859

RESUMO

The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.


Assuntos
Arsênio , Hepatopatias , Ratos , Animais , Inflamassomos/metabolismo , Ratos Sprague-Dawley , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Piroptose , Modelos Animais de Doenças , Fibrose , Cirrose Hepática/induzido quimicamente , Sulfonamidas/farmacologia , Citocinas/metabolismo
15.
Virol J ; 21(1): 89, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641810

RESUMO

Coxsackievirus-A10 (CV-A10), responsible for the hand, foot and mouth disease (HFMD) pandemic, could cause serious central nervous system (CNS) complications. The underlying molecular basis of CV-A10 and host interactions inducing neuropathogenesis is still unclear. The Hippo signaling pathway, historically known for a dominator of organ development and homeostasis, has recently been implicated as an immune regulator. However, its role in host defense against CV-A10 has not been investigated. Herein, it was found that CV-A10 proliferated in HMC3 cells and promoted the release of inflammatory cytokines. Moreover, pattern recognition receptors (PRRs)-mediated pathways, including TLR3-TRIF-TRAF3-TBK1-NF-κB axis, RIG-I/MDA5-MAVS-TRAF3-TBK1-NF-κB axis and TLR7-MyD88-IRAK1/IRAK4-TRAF6-TAK1-NF-κB axis, were examined to be elevated under CV-A10 infection. Meanwhile, it was further uncovered that Hippo signaling pathway was inhibited in HMC3 cells with CV-A10 infection. Previous studies have been reported that there exist complex relations between innate immune and Hippo signaling pathway. Then, plasmids of knockdown and overexpression of MST1/2 were transfected into HMC3 cells. Our results showed that MST1/2 suppressed the levels of inflammatory cytokines via interacting with TBK1 and IRAK1, and also enhanced virus production via restricting IRF3 and IFN-ß expressions. Overall, these data obviously pointed out that CV-A10 accelerated the formation of neuroinflammation by the effect of the Hippo pathway on the PRRs-mediated pathway, which delineates a negative immunoregulatory role for MST1/2 in CV-A10 infection and the potential for this pathway to be pharmacologically targeted to treat CV-A10.


Assuntos
Benzenoacetamidas , Infecções por Coxsackievirus , NF-kappa B , Piperidonas , Humanos , NF-kappa B/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Doenças Neuroinflamatórias , Imunidade Inata , Citocinas/metabolismo
16.
J Neuroimmune Pharmacol ; 19(1): 14, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642237

RESUMO

Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.


Assuntos
Interferon gama , Lipopolissacarídeos , Interferon gama/farmacologia , Lipopolissacarídeos/toxicidade , Microglia , Transdução de Sinais , Citocinas/metabolismo , NF-kappa B/metabolismo
17.
Front Immunol ; 15: 1368040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562925

RESUMO

Background: Excessive inflammation, hemolysis, and accumulation of labile heme play an essential role in the pathophysiology of multi-organ dysfunction syndrome (MODS) in sepsis. Alpha1-antitrypsin (AAT), an acute phase protein with heme binding capacity, is one of the essential modulators of host responses to inflammation. In this study, we evaluate the putative protective effect of AAT against MODS and mortality in a mouse model of polymicrobial abdominal sepsis. Methods: Polymicrobial abdominal sepsis was induced in C57BL/6N mice by cecal ligation and puncture (CLP). Immediately after CLP surgery, mice were treated intraperitoneally with three different forms of human AAT-plasma-derived native (nAAT), oxidized nAAT (oxAAT), or recombinant AAT (recAAT)-or were injected with vehicle. Sham-operated mice served as controls. Mouse survival, bacterial load, kidney and liver function, immune cell profiles, cytokines/chemokines, and free (labile) heme levels were assessed. In parallel, in vitro experiments were carried out with resident peritoneal macrophages (MPMΦ) and mouse peritoneal mesothelial cells (MPMC). Results: All AAT preparations used reduced mortality in septic mice. Treatment with AAT significantly reduced plasma lactate dehydrogenase and s-creatinine levels, vascular leakage, and systemic inflammation. Specifically, AAT reduced intraperitoneal accumulation of free heme, production of cytokines/chemokines, and neutrophil infiltration into the peritoneal cavity compared to septic mice not treated with AAT. In vitro experiments performed using MPMC and primary MPMΦ confirmed that AAT not only significantly decreases lipopolysaccharide (LPS)-induced pro-inflammatory cell activation but also prevents the enhancement of cellular responses to LPS by free heme. In addition, AAT inhibits cell death caused by free heme in vitro. Conclusion: Data from the septic CLP mouse model suggest that intraperitoneal AAT treatment alone is sufficient to improve sepsis-associated organ dysfunctions, preserve endothelial barrier function, and reduce mortality, likely by preventing hyper-inflammatory responses and by neutralizing free heme.


Assuntos
Doenças Transmissíveis , Sepse , Humanos , Camundongos , Animais , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Quimiocinas , Fatores Imunológicos
18.
Medicine (Baltimore) ; 103(14): e37718, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579073

RESUMO

The interaction between CD40 and CD40 ligand (CD40L) a crucial co-stimulatory signal for activating adaptive immune cells, has a noteworthy role in atherosclerosis. It is well-known that atherosclerosis is linked to immune inflammation in blood vessels. In atherosclerotic lesions, there is a multitude of proinflammatory cytokines, adhesion molecules, and collagen, as well as smooth muscle cells, macrophages, and T lymphocytes, particularly the binding of CD40 and CD40L. Therefore, research on inhibiting the CD40-CD40L system to prevent atherosclerosis has been ongoing for more than 30 years. However, it's essential to note that long-term direct suppression of CD40 or CD40L could potentially result in immunosuppression, emphasizing the critical role of the CD40-CD40L system in atherosclerosis. Thus, specifically targeting the CD40-CD40L interaction on particular cell types or their downstream signaling pathways may be a robust strategy for mitigating atherosclerosis, reducing potential side effects. This review aims to summarize the potential utility of the CD40-CD40L system as a viable therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Ligante de CD40 , Humanos , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/metabolismo , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/metabolismo , Citocinas/metabolismo , Interleucina-2/metabolismo , Macrófagos/metabolismo
19.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38565429

RESUMO

NAD+ is one of the most important metabolites for cellular activities, and its biosynthesis mainly occurs through the salvage pathway using the nicotinamide phosphoribosyl transferase (NAMPT) enzyme. The main nicotinamide adenine dinucleotide (NAD) consumers, poly-ADP-ribose-polymerases and sirtuins enzymes, are heavily involved in DNA repair and chromatin remodeling. Since cancer cells shift their energy production pathway, NAD levels are significantly affected. NAD's roles in cell survival led to the use of NAD depletion in cancer therapies. NAMPT inhibition (alone or in combination with other cancer therapies, including endocrine therapy and chemotherapy) results in decreased cell viability and tumor burden for many cancer types. Many NAMPT inhibitors (NAMPTi) tested before were discontinued due to toxicity; however, a novel NAMPTi, KPT-9274, is a promising, low-toxicity option currently in clinical trials.


Assuntos
Neoplasias , Sirtuínas , Humanos , NAD/metabolismo , Citocinas/metabolismo , Neoplasias/tratamento farmacológico , Reparo do DNA , Sirtuínas/genética
20.
Scand J Immunol ; 99(5): e13362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605563

RESUMO

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Assuntos
Aterosclerose , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Aterosclerose/genética , Células Espumosas/patologia , Citocinas/metabolismo , Interleucina-6/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Granulócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA